Abstract

Valve transplantation is often used in the treatment of aortic valve insufficiency. However, after surgery, the reconstructed aortic roots have an expansion phenomenon, in which the lack of valve height causes the aortic valve to close again. In this paper, the effects of different aortic valve height design on valve opening and closing performance were studied. The optimal surgical plan was obtained by in vitro numerical simulation, providing technical support and theoretical basis. In this paper, six groups of three-dimensional geometric models with a valve height increment of ± 0.5 mm were established with a root diameter of 26.0 mm and a valve height of 14.0 mm. Through the structural mechanics calculation and analysis of the parameters such as maximum stress, valve area and contact force of the model, reasonable geometrical dimensions are obtained. The study found that the maximum stress values of the six groups of models ranged from 640 to 690 kPa, which was consistent with the results of the literature; the three-group models with valve heights of 13.5 mm, 14.0 mm, and 14.5 mm were within a reasonable range. The contact force value of the 6 groups of leaflets increased with the increase of valve height. Studies have shown that the height of the aortic valve has an effect on the aortic valve closure performance. A valve height that is too small or too large will reduce the aortic systolic valve area and affect the aortic function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.