Abstract

The electron spin properties are promising for future spin-driven devices. In contrast to charge, spin is not a conserved quantity, and having sufficiently long spin lifetime is critical for applications. Silicon, the major material of microelectronics, also appears to be a perfect material for spintronic applications. The peculiarities of the subband structure and details of the spin propagation in ultra-thin silicon films in the presence of strain are investigated. The application of an uniaxial stress can lift the degeneracy between the remaining two valleys in a (001) silicon film. The [001] equivalent valley coupling through the Γ-point, which results in a subband splitting in a confined relaxed electron structure, is properly included. Its impact on the shear strain inflicted equivalent subband splitting is evaluated, and thereby the dependence of spin lifetime on the valley splitting is predicted. In all possible conditions, the spin lifetime is observed to be boosted by several orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.