Abstract

In order to further improve the deposition process of the W-doped DLC films synthesized by a hybrid deposition method of vacuum cathodic arc, ion beam deposition, and magnetron sputtering, the paper studied the effect of vacuum cathodic arc etching prior to the deposition on the surface morphology, chemical bond status, hardness, elastic modulus, adhesion, friction, and wear of the films. It was found that the surface defects in the W-doped DLC films, which increase the average value and fluctuation of the friction coefficient of the W-doped DLC films, are mainly produced by vacuum cathodic arc etching. The adhesion and wear resistance of the W-doped DLC films can be obviously improved by arc etching while arc etching has an unobvious effect on the chemical bonding status, hardness, and elastic modulus of the W-doped DLC films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.