Abstract

Induced trench method is a well-known technique usually used to reduce the soil pressure applied on buried pipes. This method involves the use of a lightweight compressible material above the buried pipe to increase the positive arching, and thus, to decrease the soil pressure applied on the buried pipe. However, little efforts have been given by previous studies to check the applicability of using tire-derived aggregate (TDA) as the light weight and compressible material in the induced trench method, where it is not clear if the TDA could be used to increase the positive arching for the case of concrete pipes with different diameters and backfill heights. Thus, this paper investigates the effect of using TDA on the structural performance of buried concrete pipes subjected to soil load using a validated three-dimensional finite element model. A sensitivity analysis has been carried out to examine the effect of the configuration of the TDA, backfill height, and pipe diameter on the performance of the TDA in reducing the pipe wall bending moment. It was found that increasing the backfill height decreases the performance of the TDA. Furthermore, increasing the pipe diameter up to 1.2 m increases the TDA performance. However, the performance of the TDA significantly reduces as the diameter increases from 1.2 m to 2.4 m. In addition, it was also observed that the TDA configuration has a remarkable influence on its performance, where it is necessary to place the TDA layer on top of the pipe crown to increase the positive arching. The results reported in this paper provide useful addition to the literature and will help designers to ensure the economic design of buried pipes using recyclable materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call