Abstract

Accumulative roll bonding (ARB), as a method for production of ultrafine grained materials, is frequently supposed to be easily transferable to established industrial production lines. In literature, however, common sheet dimensions used for ARB in a laboratory scale are between 20 and 100 mm in width. In order to quantify the potential of upscaling the ARB process to a technological relevant level, sheets of AA1050A with an initial sheet width of 100–450 mm were accumulative roll bonded up to 8 cycles. In this regard, three different rolling mills of distinct dimensions were used for processing of the sheet material. The influence of process parameters and the reproducibility of the process, in terms of mechanical properties and homogeneity of the sheets, were studied by means of mechanical and microstructural characterization. Both appear to be largely independent on the sheet size and the rolling mill utilized for production. Only small deviations after the first cycles could be detected, vanishing in subsequent cycles due to the features of microstructural evolution. The finally obtained results indicate a high potential for industrial application of ARB and illustrate the possibility to upscale the process to a level necessary for that purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.