Abstract

ABSTRACTPurposeDiaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue.MethodsSeven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg−1·min−1) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively.ResultsExercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min−1 (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min−1 (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5–15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25–35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise.ConclusionsHigh-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax.

Highlights

  • The diaphragm and abdominal muscles of healthy human beings exhibit contractile fatigue after whole-body exercise sustained to exhaustion at intensities greater than 80% maximum O2 uptake (V O2max)

  • Contractile fatigue of the diaphragm did not occur when rested subjects mimicked the magnitude and duration of diaphragmatic work incurred during whole-body exercise; fatigue was only observed when diaphragmatic work was voluntarily increased twofold greater than that required during maximal exercise [4]

  • It was hypothesized that 1) the additional mechanical demands imposed by upper-body exercise would induce contractile fatigue of the diaphragm and abdominal muscles and 2) the magnitude and prevalence of respiratory muscle fatigue would be dependent upon exercise intensity

Read more

Summary

Introduction

The diaphragm and abdominal muscles of healthy human beings exhibit contractile fatigue after whole-body exercise sustained to exhaustion at intensities greater than 80% maximum O2 uptake (V O2max). Such exercise-induced respiratory muscle fatigue has been documented after cycle ergometry and treadmill running, whereby transdiaphragmatic (Pdi) and gastric (Pga) pressures evoked by supramaximal magnetic stimulation of the phrenic and thoracic nerves, respectively, were reduced by 15%–30% relative to preexercise. It was hypothesized that 1) the additional mechanical demands imposed by upper-body exercise would induce contractile fatigue of the diaphragm and abdominal muscles and 2) the magnitude and prevalence of respiratory muscle fatigue would be dependent upon exercise intensity

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call