Abstract

Additive manufacturing is a recent tool in medicine able to fabricate scaffolds to replace or regenerate bone tissues. The process permits the user to control scaffolds parameters such as size, unit cell, porosity, wall thickness, etc. However, the use of these three-dimensional geometries might negatively affect their corrosion behaviour. This paper studies the influence of Ti-6Al-4V ELI scaffold unit cell and, geometry size on the electrochemical response. Three different types of scaffold unit cell and three different geometry sizes were fabricated by additive manufacturing technique. The porosity of the scaffolds was studied by X-ray microtomography while surface changes, by scanning electron microscopy. Electrochemical behaviour was evaluated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in a phosphate buffered saline solution at 37 °C. Potentiodynamic polarization curves show that scaffolds showed a higher pitting susceptibility than solid samples at potentials higher than 1 V. EIS spectra show that the scaffolds geometry size promotes narrowing of the maximum phase angle at the high frequency range (102-105) due to a non-homogeneous distribution of current and potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call