Abstract

Conventional surface grinding can be divided into up grinding and down grinding according to rotation direction of spindle. Nevertheless, the effects and differences of ultrasonic vibration on the two machining methods have been less reported. The influence of ultrasonic vibration amplitude on cutting force, surface roughness and surface topography were investigated in this paper by conducting tangential and radial ultrasonic vibration assisted down/up grinding comparison experiments on SiC. The results showed that the grinding force of down grinding was less than that of up grinding in conventional grinding, while the surface roughness was greater than that of up grinding. The grinding forces of both down grinding and up grinding were reduced to different ratios after applying different ultrasonic vibration, while the surface roughness increased. The grinding force of up grinding decreased and then increased with the increase of amplitude, while the grinding force of down grinding kept decreasing and the surface roughness decreased. The reasons for the differences in cutting forces and surface quality between the two grinding methods after the application of ultrasonic vibration are discussed. By observing the surface morphology, the percentage of ductile area on the machined surface decreases and then increases with the increase of amplitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call