Abstract

The shear resistance at the sleeper–ballast interface of a ballasted track is an important contributor in maintaining track stability under faster and heavier axle loads where the ballast undergoes significant lateral sliding. Different types of sleeper–ballast interfaces based on the type of sleeper arrangements, such as concrete sleepers, timber sleepers, and under sleeper pads (USPs) attached to the concrete sleepers influence the lateral stability of railway tracks. Therefore, in this study the shear and degradation behaviour of ballast at concrete–ballast, timber–ballast, and USP–ballast interfaces were examined in the laboratory using large-scale direct shear tests under 60 kPa normal stress. The use of waste materials in the construction of civil infrastructure is gaining a lot of interest in the engineering community. Therefore, in addition to commercial USPs manufactured using raw materials, recycled USPs manufactured from granulates of end-of-life rubber tyres were also tested in this study. The discrete element modelling (DEM) approach was used to predict the shear behaviour of ballast at 30, 90, 120, 150, and 180 kPa normal stresses. The bonded particle model (BPM) was adopted in the DEM to simulate the effects of particle breakage during shearing. The results exhibited that both commercial and recycled USPs significantly improve the shear resistance at the sleeper–ballast interface while reducing particle degradation compared to concrete and timber sleeper interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call