Abstract

Recent research indicates that the food matrix can influence digestion kinetics and uptake of nutrients, thus affecting human health. The aim of this study was to obtain knowledge on how variations in microstructure and texture of foods represented by four dairy products; (i) cheddar cheese, (ii) a homogenized cheddar cheese, (iii) a micellar casein and cream drink or (iv) a micellar casein and cream gel, all of identical nutrient ratios of protein : fat and calcium : fat, affect the in vitro digestibility kinetics of lipids. Rheology of the four dairy structures was measured at 10 °C and 37 °C before digestion, and during the gastric phase of in vitro digestion. During digestion cheddar cheese was most resistant to enzymatic and mechanical disintegration, followed by homogenized cheese, while both the drink and gel had low resistance and dissolved in the gastric juice. Particle size, fat droplet size and microstructure were assessed by light scattering and confocal microscopy during digestion. Significantly larger fat droplets were observed during digestion of the cheddar cheese sample. The release of free fatty acids during the initial intestinal digestion showed cheddar cheese to provide a significantly lower release than homogenized cheese, whereas the drink and gel both had significantly higher free fatty acid release. The results suggest that the cheese matrix resistance to degradation and its large fat droplets were responsible for a slower fat digestion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.