Abstract

Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call