Abstract

The design of the ports of a casting nozzle has profound effects on the fluid flow patterns in slab molds. The influence of these outlets have also considerable effects on the turbulent flow and turbulence variables inside the nozzle itself. To understand the effects of nozzle design, three approaches were employed: a theoretical analysis based on the turbulent viscosity hypothesis, dimensional analysis (both analyses aided by computer fluid dynamics), and experiments using particle image velocimetry. The first approach yields a linear relation between calculated magnitudes of scalar fields of e (dissipation rate of kinetic energy) and k 2 (square of the turbulent kinetic energy), which is derived from the wall and the logarithmic-wall laws in the boundary layers. The smaller the slope of this linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt–flux interface. The second approach yields also a linear relation between flow rate of liquid metal and the cubic root of the dissipation rate of kinetic energy. In this case, the larger the slope of the linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt–flux interface. Finally, PIV measurements in a mold water model, together with equations for estimation of critical melt velocities for slag entrainment, were used to quantify the effects of nozzle design on the dynamics of the metal–slag interface. The three approaches agree in the characterization of turbulent flows in continuous casting molds using different nozzles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.