Abstract
Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.