Abstract

AbstractThe oncoming wind to horizontal axis wind turbines (HAWT) may change its speed and direction stochastically in time. Hence, turbine blades are exposed to flows both with fluctuating angle of attack and fluctuating yaw angles. The modern wind turbines are reacting to those changes by pitch angle and torque control not only to exploit as much power as possible but also stabilize energy production and prevent any damage of the turbine. However, time scales of wind fluctuations and sudden changes of wind properties can be very short and with very high in amplitude. In the present study we focus on the influence of turbulence on the performance of a HAWT. Main motivation of the investigations is to figure out best strategies for the aerodynamic design of the blades operating under turbulent conditions. A laboratory scale HAWT and a performance measurement set‐up are employed to measure the influence of the oncoming wind. The tests are conducted in the closed loop wind tunnel of our institute. The test section of the tunnel is 1.87 m in width, 1.4 m in height and 2 m in length. The rotor blades are specially designed and optimized for this wind tunnel and the generator used. The turbulence is generated by two static squared mesh grids; fine and coarse one. Hence, two mainly different turbulence scales are obtained. In addition, the distance between the wind‐turbine and the grid is adjusted to have additional sub‐turbulence scales for each grid. The turbulence is nearly isotropic and decays in the flow direction. The developments of Taylor's micro scale (λg) and integral scale (Lg) of the turbulence in the flow direction at various incoming wind velocities (8−16 m/s) are measured. Hence, the facility allows to expose the wind‐turbine to turbulence with various energy and length scale content. Those measurements are conducted with hot‐wire anemometry in the absence of the wind‐turbine. Upstream and downstream turbulence intensities (TI) distributions are measured to give insight on the surrounding free stream and turbine wake interaction and how can different turbulence eddies scales contribute in the influence of the performance of the turbine. Performance measurements are conducted with and without turbulence and the results are compared. The study shows that the higher the turbulence, the more the power extracted by the turbine. This is due to the higher interaction of large eddies with the turbine wake and with the boundary layer, which helps to keeping it attached. Furthermore, higher TI's help in suppressing the tip vortex, thus, reduce turbine tip losses. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call