Abstract

Rationality of the parameter settings in turbulence model is an important factor affecting the accuracy of conjugate heat transfer (CHT) prediction. On the basis of a developed CHT methodology and the experimental data of Mark// cooling turbine blade, influences of the turbulence model parameter settings and the selection of turbulence models on CHT simulation are investigated. Results and comparisons with experimental data indicate that the inlet setting of the $$\tilde{v}$$ in Spalart–Allmaras model has nearly no influence on flow and heat transfer in blade surface. The inlet turbulence length scale l T in the low-Reynolds number Chien k-e turbulence model and the blade surface roughness in shear stress transport (SST) k-ω SST model have relatively obvious effects on the blade surface temperature which increases with the increase of them. Both of the laminar Prandtl number and turbulent Prandtl number have slight influences on the prediction, and they only need to be constant in CHT simulation. The k-ω SST model has the best accuracy in the turbine blade CHT simulation compared with the other two models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.