Abstract
IntroductionThe prevalence of diabetes mellitus is increasing year by year globally, and diabetic cardiomyopathy (DCM), as the most common complication of type 2 diabetes mellitus, seriously affects the prognosis of patients. Trimetazidine (TMZ), as a drug affecting myocardial energy metabolism, mainly reduces the oxidation rate of β-oxidation by inhibiting 3-ketoacyl-CoA thiolase (3-KAT), a key enzyme in β-oxidation of free fatty acid (FFA), so that the energy metabolism substrate of cardiomyocytes preferentially selects glucose rather than fatty acids, increases the content of intracellular adenosine triphosphate (ATP), enhances the contractile function of cardiomyocytes, and improves the state of cellular ischemia and hypoxia. Previous studies have shown that TMZ is closely related to the activation and induction of apoptosis of the MAPK pathway and AMPK pathway, and plays a role in the treatment of diabetic cardiomyopathy, but the specific mechanism is still unclear. ObjectiveThis study aims to investigate the impact of TMZ on myocardial damage in mice exhibiting diabetic cardiomyopathy (DCM), and to furnish a laboratory foundation for the clinical treatment of diabetic cardiomyopathy. MethodMale db/db mice (6 weeks old, n = 21) and male wild-type (wt) (6 weeks old, n = 20) mice were selected for the study. The wt mice were randomly assigned to the wt group (n = 10) and wt + TMZ group (n = 10), while the remaining db/db mice were randomly allocated to the db/db group (n = 11) and db/db + TMZ group (n = 10). Following 8 weeks of feeding, the wt + TMZ group and db/db + TMZ group received TMZ via gavage, whereas the remaining groups were administered physiological saline. Periodic measurements of blood glucose, blood lipids, and myocardial enzymes were conducted in mice, with samples obtained after the 12th week for subsequent biochemical analysis, myocardial pathology assessment, immunohistochemistry, western blot analysis, and TUNEL staining (TdT-mediated dUTP Nick-End Labeling). ResultGLU, TC, TG, LDL-C, and CK-MB levels were significantly higher in db/db mice compared to wt mice (GLU: M ± SD wt 5.94 ± 0.37, db/db 17.63 ± 0.89, p < 0.05, ES = 0.991; TC: M ± SD wt 3.01 ± 0.32, db/db 6.97 ± 0.36, p < 0.05, ES = 0.972; TG: M ± SD wt 0.58 ± 0.2, db/db 1.75 ± 0.14, p < 0.05, ES = 0.920; LDL-C: M ± SD wt 1.59 ± 0.12, db/db 3.87 ± 0.14, p < 0.05, ES = 0.989; CK-MB: M ± SD wt 0.12 ± 0.01, db/db 0.31 ± 0.04, p < 0.05, ES = 0.928). HDL-C levels were significantly lower in db/db mice (M ± SD wt 1.89 ± 0.08, db/db 0.64 ± 0.09, p < 0.05, ES = 0.963). Histopathological analysis confirmed myocardial damage in db/db mice. Treatment with TMZ reduced GLU, TC, TG, LDL-C, and CK-MB levels (p < 0.05, ES > 0.9) and increased HDL-C levels compared to untreated db/db mice. Additionally, TMZ treatment significantly decreased myocardial cell apoptosis (p < 0.05, ES = 0.980). These results demonstrate the efficacy of TMZ in reversing myocardial injury in DCM mice. ConclusionTMZ can mitigate myocardial damage in db/db mice by downregulating the expression of caspase-12, a protein associated with the endoplasmic reticulum stress (ERS) cell apoptosis pathway, consequently diminishing cell apoptosis. This underscores the protective efficacy of TMZ against myocardial damage in mice afflicted with DCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.