Abstract

The influence of treating the melts by electromagnetic acoustic fields on the structure and properties of Al–12% Si and Al–20% Si binary alloys is investigated. In the course of experiments, the frequency of the electromagnetic field induced in the loop antenna varies as 500, 1000, and 2000 kHz. The melts are treated after their degassing and refining. It is established that this treatment method of the melts leads to a reduction of the total preparation time of alloy by 12% on average. The short-term treatment of the melts by electromagnetic acoustic fields promotes the refinement of the main phase components of alloys and an increase in their mechanical properties. When treating the Al–12% Si eutectic alloy with a frequency of 500 kHz, α-Al dendrites are refined from 30 to 22 μm and eutectic Si crystals are refined from 13 to 10 μm. When treating the Al–20%Si eutectic alloy with a frequency of 1000 kHz, eutectic Si crystals diminished from 8 to 5 μm and these of primary Si diminished from 90 to 62 μm. The ultimate tensile strength of the Al–12%Si eutectic alloy increases 13% under the mentioned treatment modes, while the relative elongation increases 17%; as for the Al–20% Si eutectic alloy, the same characteristics increases 9 and 65%, respectively. Based on these investigations, it is concluded that the selection of the treatment parameters of the melts of the Al–Si system by electromagnetic acoustic fields should be determined by the silicon content in the alloy. It is necessary to treat the melt by waves with a higher oscillation frequency with an increase in the silicon concentration. This treatment method makes it possible to form the modified fine-crystalline structure of alloy and, consequently, improves their mechanical properties. It can be successfully used when fabricating fine-crystalline foundry alloys and in the production of alloys of the Al–Si system. To determine the optimal treatment parameters depending on the structure of the initial charge and alloy nature, additional investigations are required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call