Abstract
We study the impact of deep-level defects on trap-assisted Auger–Meitner recombination in c-plane InGaN/GaN LEDs using a small-signal electroluminescence (SSEL) method and deep-level optical spectroscopy (DLOS). Carrier dynamics information, including carrier lifetime, recombination rate, and carrier density, is obtained from SSEL, while DLOS is used to obtain the deep-level defect density. Through fitting the nonradiative recombination rates of wafers with different deep-level defect densities, we obtain the Shockley–Read–Hall (SRH) and trap-assisted Auger–Meitner recombination (TAAR) coefficients. We show that defect-related nonradiative recombination, including both SRH and TAAR, accounts for a relatively small fraction of the total nonradiative recombination, which is dominated by intrinsic Auger–Meitner recombination. The interplay between carrier localization and Coulomb enhancement has a different impact on radiative and intrinsic Auger–Meitner recombination. Evidence is presented that the imbalance between the change of radiative and intrinsic Auger–Meitner recombination is the primary cause of the efficiency droop at high carrier densities in the samples studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.