Abstract

AbstractInter-satellite communication is one of the revolutionary techniques that can be used to transmit the high speed date between satellites. However, space turbulences such as transmitting pointing errors play a significant role while designing inter-satellite communication systems. Those turbulences cause shutdown of inter-satellite link due to increase of attenuation during data transmission through link. The present work aims to develop an integrated data transmission system incorporating alternate mark inversion (AMI), wavelength division multiplexing (WDM), and polarization interleaving (PI) scheme for transmitting data 160 Gbps over inter-satellite link of 1,000 km under the influence of space turbulences. The performance of the integrated data transmission of 160 Gbps data up to 1,000 km will be evaluated under the influence of space turbulences by means of signal to noise ratio (SNR), total received power, bit error rate and eye diagram.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call