Abstract
Research studies combining the detailed physicochemical properties' analysis, the catalytic activity in different real aqueous matrices, the proposal of degradation mechanisms and the stability of the intermediates/by-products by means of the Density-functional theory (DFT) are scarce. Therefore, this work gives a step forward in the field of circular economy and the removal of emerging pollutants such as the antibiotic ciprofloxacin, covering all the previously aspects mentioned, using four iron and nickel-based catalysts from two different sewage sludge.Experimental results revealed a significant influence of both the source of the sewage sludge and the activating agent used (iron chloride, nickel chloride and a mixture of both) on the physicochemical properties of the materials and, hence, on their catalytic activity. FTIR studies and chemical composition evidenced that the use of this biomass precursor leads to the generation of a wide variety of functional groups and heteroatoms in the synthesized catalyst structure. Moreover, they showed a combination of Type I-IV isotherms with H3-H4 type hysteresis loops, being mainly mesoporous materials and exhibiting a moderate microporosity except when nickel chloride was used solely as activating agent. The carbonaceous materials reached ciprofloxacin adsorption capacities in the range of 40.4–73.9 mg/g. The use of nickel chloride showed the lowest adsorption contribution and catalytic activity. The bimetallic catalyst (synthesized from a mixture of iron and nickel chloride) showed slightly higher catalytic activity than that found for the iron catalyst, but the metal leaching was also considerably higher. Consequently, the use of iron chloride solely as activating agent seems to be the better alternative, achieving a maximum ciprofloxacin removal around 99.7 % and an iron leaching concentration into the reaction medium of 0.48–0.61 mg/L. The main degradation pathways of ciprofloxacin were proposed according to the detection of LC-MS intermediates and DFT calculation, indicating the most likely areas of attack of reactive species on atoms with a high Fukui index (f0).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.