Abstract
Because polycyclic aromatic hydrocarbons (PAHs) have been proven to be toxic, mutagenic, and/or carcinogenic, there is widespread interest in analyzing and evaluating exposure to PAHs in atmospheric environments influenced by different emission sources. Because traffic emissions are one of the biggest sources of fine particles, more information on carcinogenic PAHs associated with fine particles needs to be provided. Aiming to further understand the impact of traffic particulate matter (PM) on human health, this study evaluated the influence of traffic on PM10 (PM with aerodynamic diameter <10 µm) and PM2.5 (PM with aerodynamic diameter <2.5 µm), considering their concentrations and compositions in carcinogenic PAHs. Samples were collected at one site influenced by traffic emissions and at one reference site using low-volume samplers. Analysis of PAHs was performed by microwave-assisted extraction combined with liquid chromatography (MAE-LC); 17 PAHs, including 9 carcinogenic ones, were quantified. At the site influenced by traffic emissions, PM10 and PM2.5 concentrations were, respectively, 380 and 390% higher than at the background site. When influenced by traffic emissions, the total concentration of nine carcinogenic compounds (naphthalene, chrysene, benzo(a)anthracene, benzo(b) fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and dibenzo(a,l)pyrene) was increased by 2400 and 3000% in PM10 and PM2.5, respectively; these nine carcinogenic compounds represented 68 and 74% of total PAHs (ΣPAHs) for PM10 and PM2.5, respectively. All PAHs, including the carcinogenic compounds, were mainly present in fine particles. Considering the strong influence of these fine particles on human health, these conclusions are relevant for the development of strategies to protect public health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.