Abstract

Functionalized multiwalled carbon nanotubes (F-MWCNTs) were individually dispersed in a commercial polypropylene (PP) matrix using our well-established α-zirconium phosphate (ZrP) nanoplatelet-assisted dispersion approach. The F-MWCNTs remained uniformly dispersed in PP after melt mixing and injection-molding and were found to remarkably enhance modulus and strength at only 0.1 wt % loading. The individual F-MWCNTs were mostly oriented and extended in the flow direction and were shown to be integrated within the crystalline structure of the matrix. The change in mechanical properties is attributed to both the modification in crystal structure due to MWCNT-induced nucleation and the direct reinforcement of crystalline lamellae and amorphous regions by the MWCNTs. We propose that the compatibilized F-MWCNTs exhibit sufficient interfacial interaction with the PP matrix to anchor lamellae stacks and resist interlamellar slip. The F-MWCNTs also reinforce amorphous domains between crystallites and behave as “su...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.