Abstract
Ethylene-vinyl acetate copolymer (EVA) was added at different contents to the thermoplastic polyurethane (TPU) matrix to form a non-compatible blending system, and foaming materials with high pore density were prepared using the supercritical carbon dioxide extrusion method. The influence of the phase morphology and crystal morphology of the TPU/EVA blend on its foaming behavior was studied. The results show that EVA changed the phase morphology and crystal morphology of the blends, leading to the improved melt viscosity and crystallinity of the blend system. At the same time, interfacial nucleation increases the density of cells and decreases the cell thickness and size, which is beneficial for improving the foaming properties of the blends. For the EVA content of 10% (mass fraction), the cell size is small (105.29 μm) and the cell density is the highest (3.74 × 106 cells/cm3). Based on the TPU/EVA phase morphology and crystal morphology, it is found that the sea-island structure of the blend has better foaming properties than the bicontinuous structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.