Abstract

The Siberian hamster exhibits the key winter adaptive strategy of daily torpor, during which metabolism and heart rate are slowed for a few hours and body temperature declines by up to 20 degrees C, allowing substantial energetic savings. Previous studies of hibernators in which temperature drops by >30 degrees C for many days to weeks have revealed decreased transcription and translation during hypometabolism and identified several key physiological pathways involved. Here we used a cDNA microarray to define cardiac transcript changes over the course of a daily torpor bout and return to normothermia, and we show that, in common with hibernators, a relatively small proportion of the transcriptome (<5%) exhibited altered expression over a torpor bout. Pathways exhibiting significantly altered gene expression included transcriptional regulation, RNA stability and translational control, globin regulation, and cardiomyocyte function. Remarkably, gene representatives of the entire ubiquitylation pathway were significantly altered over the torpor bout, implying a key role for cardiac protein turnover and translation during a low-temperature torpor bout. The circadian clock maintained rhythmic transcription during torpor. Quantitative PCR profiling of heart, liver, and lung and in situ hybridization studies of clock genes in the hypothalamic circadian clock in the suprachiasmatic nucleus revealed that many circadian regulated transcripts exhibited synchronous alteration in expression during arousal. Our data highlight the potential importance of genes involved in protein turnover as part of the adaptive strategy of low-temperature torpor in a seasonal mammal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call