Abstract

In this study, a surface wear prediction model for helical gears pairs is employed to investigate the influence of tooth profile deviations in the form of intentional tooth profile modifications or manufacturing errors on gear tooth surface wear. The wear model combines a finite-element-based gear contact mechanics model that predicts contact pressures, a sliding distance computation algorithm, and Archard’s wear formulation to predict wear of the contacting tooth surfaces. Typical helical gear tooth modifications are parameterized by an involute crown, a lead crown, and an involute slope. The influence of these parameters on surface wear are studied within typical tolerance ranges achievable using hob/shave process. The results indicate that wear is related to the combined modification parameters of a gear pair rather than individual gear parameters. At the end, a design formula is proposed that relates the mismatch of contacting surface slopes to the maximum initial wear rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.