Abstract

Distortion product otoacoustic emissions (DPOAEs) and hearing thresholds (HTs) are widely used to evaluate auditory physiology. DPOAEs are sensitive to cochlear amplification processes, while HTs are additionally dependent upon inner hair cells, synaptic junctions, and the auditory nervous system. These distinctions between DPOAEs and HTs might help differentially diagnose auditory dysfunctions. This study aims to differentially diagnose auditory dysfunctions underlying tinnitus, firearm use, and high lifetime noise exposure (LNE) using HTs, DPOAEs, and a derived metric comparing HTs and DPOAEs, in a sample containing overlapping subgroups of 133 normal-hearing young adults (56 with chronic tinnitus). A structured interview was used to evaluate LNE and firearm use. Linear regression was used to model the relationship between HTs and DPOAEs, and their regression residuals were used to quantify their relative agreement. Participants with chronic tinnitus showed significantly elevated HTs, yet DPOAEs remained comparable to those without tinnitus. In contrast, firearm users revealed elevated HTs and significantly lower DPOAEs than predicted from HTs. High LNE was associated with elevated HTs and a proportional decline in DPOAEs, as predicted from HTs. We present a theoretical model to interpret the findings, which suggest neural (or synaptic) dysfunction underlying tinnitus and disproportional mechanical dysfunction underlying firearm use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call