Abstract

Conservation agriculture is a sustainable system of farming that safeguard and conserves natural resources besides enhancing crop production. The biological properties of soil are the most sensitive indicator to assess the short term impact of management practices such as tillage and residue incorporation. Nine treatments of tillage and residue management practices [Reduced till direct seeded rice-zero till barley (RTDSR-ZTB); RTDSR-ZTB-green gram residue (Gg); Zero till direct seeded rice-zero till barley-zero till green gram (ZTDSR-ZTB-ZTGg); RTDSR-ZTB + rice residue at 4 t ha 1 (RTDSR-ZTBRR4); RTDSR-ZTBRR6; un-puddled transplanted rice (UPTR)-ZTB-Gg; UPTR-ZTBRR4; UPTR-ZTBRR6, and puddled transplanted rice (PTR)-RTB] executed under fixed plot for five years on crop productivity and soil biological properties under rice-barley production system. The shifting in either RTDSR or ZTDSR resulted in yield penalty in rice compared to PTR. The PTR recorded highest pooled grain yield of 3.61 ha-1. The rice grain yield reduced about 10.6% under DSR as compared to PTR. The ZTB along with residue treatments exhibited significantly higher grain yield over ZTB, and the RTDSR-ZTBRR6 registered highest pooled grain yield of barley. The system productivity (12.45 t ha-1) and sustainable yield index (0.87) were highest under UPTR-ZTBRR6. Biological parameters including microbial biomass carbon, soil respiration, microbial enzymes (Alkaline phosphatase, nitrate reductase and peroxidase), fluorescein diacetate hydrolysis, ergosterol, glomalin related soil proteins, microbial population (bacteria, fungi and actinobacteria) were found to be significantly (p < 0.05) effected by different nutrient management practices. Based on the PCA analysis, Fluorescein diacetate hydrolysis, microbial biomass carbon, soil respiration, nitrate reductase and fungi population were the important soil biological parameters indicating soil quality and productivity in present experiment. The results concluded that UPTR-ZTBRR6 was a more suitable practice for maintaining system productivity and soil biological health. The understanding of the impact of different tillage and residue management practices on productivity, soil biological properties and soil quality index under rice-barley cropping system will help in determining the combination of best conservation agriculture practices for improved soil quality and sustainable production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.