Abstract

This paper presents the results obtained on the multiple layers of cobalt (Co)/platinum (Pt) and cobalt (Co)/platinum (Pt)/cobalt (Co) on the oxidised silicon substrate. The cobalt layers were deposited by metal-organic chemical vapour deposition on oxidised-silicon substrates at 450 °C, in H2 ambient with 2-torr processing pressure. The platinum layers were deposited by E-beam evaporation in a separate vacuum system. The magnetic properties of Co/Pt/Co and Co/Pt multilayer were compared with the single cobalt layers of similar thicknesses on the oxidised silicon substrate. From the hysteresis loops it was observed that thin cobalt layers on oxidised-silicon substrate shows hard magnetic property with coercivity H c values of 360 Oe and 500 Oe respectively for the 30- and 15-nm cobalt layers. The multiple layers of Co/Pt/Co and Co/Pt of cobalt thickness 15- and 30-nm with platinum 1.5-nm spacer-layer show significant change in magnetic properties (i.e. coercivity H c and magnetisation M s ) and, gave soft magnetic properties with H c values 51 and 49 Oe respectively, which are significantly less than the H c values of single cobalt layers on oxidised silicon. Also, single and multiple layers cobalt with platinum were annealed and compared with the as-deposited layer structures. From the microstructure analysis by SEM, and AFM it was found that the single and multilayer had similar roughness. Magnetic images were observed by MFM and analyzed in terms of domain structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.