Abstract

We report the structural and magnetic properties of a [Co/Pt] multilayer matrix as a function of Pt thickness. Increasing Pt thickness allows for the formation of a well-aligned fcc (111) CoPt3 structure in a [Co/Pt]n multilayer geometry, where the clear appearance of main (111) peak of CoPt3 measured using the X-ray diffraction patterns was confirmed. High-resolution transmission electron microscopy images, along with the corresponding fast Fourier transform patterns displayed the ordered structure with clear 6-fold symmetric diffraction spots. The c/a lattice constant ratio of 0.949 was calculated by utilizing the XRD and, demonstrating the presence of a well-aligned CoPt3 structure. The Pt thickness-dependent saturation magnetization (M(s)) values for the in- and out-of-plane M-H hysteresis loops obtained by vibrating sample magnetometer measurements showed distinctly opposite trends. The increase in the out-of-plane M(s) value with increasing Pt thickness seems to originate from the enhanced perpendicular orbital moment of the proper CoPt3 structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call