Abstract

Glass bead-reinforced isotactic polypropene hybrid composites containing 0–20 vol % thermoplastic elastomers were prepared to study both structure/property relationship and morphology development. Polystyrene-block-poly(ethene-co-but-1-ene)-block-polystyrene (SEBS) and the corresponding block copolymer grafted with maleic anhydride (SEBS-g-MA) were used as thermoplastic elastomers. Hybrid composites containing SEBS gave higher Young's moduli than did those containing SEBS-g-MA. The experimental Young's moduli were in good agreement with the theoretical predictions according to Lewis and Nielsen. The lower moduli of hybrid composites containing SEBS-g-MA were attributed to interlayer formation and in situ encapsulation of glass beads, resulting in core–shell particles. This elastomeric interlayer impaired the filler reinforcement. Analysis of tensile yield stress and results of lap-shear tests confirmed strong filler–polymer interactions in composites containing SEBS-g-MA. Only in excess of a critical volume fraction did SEBS-g-MA afford a significant improvement of the notched Izod impact strength. In contrast to stiffness, Izod impact strength was not influenced by the type of elastomer and morphology. Investigation of crystallization and scanning electron microscopic studies proved the in situ encapsulation of the glass beads with SEBS-g-MA, whereas SEBS addition results in separately dispersed glass beads and SEBS microphases. © 1996 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.