Abstract

The present study investigates the influence of thermo-mechanical material properties of different steel grades (S355–S960) on welding residual stresses and angular distortion in T-fillet joints. Different cases in which temperature dependent thermo-mechanical material properties are considered as constant, linear, and as a function of temperature are simulated by using finite element (FE) method. Experiments are carried out to evaluate temperature dependent yield stress and Young’s modulus for S700 and S960 steel grades. Furthermore, JMat Pro software is used to obtain the remaining thermo-mechanical material properties. The numerical predictions of angular distortion and transverse residual stresses are validated with experimental measurements. It is observed that for assessment of residual stresses, except yield stress, all of the thermo-mechanical properties can be considered as constant. For the prediction of angular distortions with acceptable accuracy, heat capacity, yield stress and thermal expansion should be employed as temperature dependent in the welding simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.