Abstract

Thermal activation of palygorskite is considered as a simple and cost-effective method for modifying its structural and surface properties, which can be congenial for the adsorptive removal of environmental contaminants. However, for a more efficient removal of organic contaminants like polycyclic aromatic hydrocarbons (PAH), clay-microbial synergy combining both adsorption and biodegradation is an emerging strategy. In this study, we investigated the compatibility of heat treated palygorskite products (100–900°C) with a PAH-degrading soil bacterium Burkholderia sartisoli. The mineralogical and physico-chemical properties were characterised in detail, and the bacterial adhesion to the substrate and their growth were observed in relation to these properties. The major variation in the cation exchange capacity (CEC), surface area, water content and the elemental dissolution in the aqueous medium occurred in the palygorskite products heated at extreme temperature (700–900°C). These changes significantly influenced the bacterial growth and attachment. The maximum viability was imparted by the palygorskite product obtained at 400°C. Dissolution of Al from products heated above 500°C also posed inhibitory effect on bacterial growth in the aqueous media. This study provided valuable information about the mechanisms of bacterial viability as affected by modified clay minerals, which is important for developing a novel clay-modulated-bioremediation technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.