Abstract
The present study describes the effect of thermally assisted machining (TAM) parameters on the cutting force, tool wear and surface integrity characteristics (surface roughness, surface topography, and microhardness) of Inconel 718. An inexpensive flame heating technique using oxy-acetylene flame is used to heat the workpiece material. The TAM parameters such as cutting speed, feed rate, depth of cut, and workpiece temperature were selected as process parameters over cutting force, tool wear and surface integrity characteristics.The experimental results reveal that the cutting forces and surface roughness decrease with increases in cutting speed and workpiece temperature, while the workpiece temperature increases as tool wear decreases. The tool wear mechanisms observed were abrasive, adhesive, diffusion and notch wear. The XRD results of thermally assisted machining reveal that neither phase change nor broadening of the peaks were observed at different machining conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.