Abstract

BackgroundThe detection efficiency of ultrasonic transmitters is seasonally variable, requiring long-term studies to evaluate key environmental features that mask, alter speed, bend, or reflect transmissions. The US Southern Mid-Atlantic Bight shelf is characterized by a strong summer thermocline capping remnant winter water, known as the Cold Pool, and a well-mixed water column in other seasons. To investigate the effects of interactions between temperature stratification and storm-induced noise on transmission detectability, we conducted a year-long range test of 69-kHz acoustic transmitters in the bottom waters of the US Southern Mid-Atlantic Bight. We used generalized additive models and cross-validation to develop and evaluate a predictive model of detection efficiency and visualize variability in detection distance throughout the year of deployment.ResultsThe most-predictive model contained the effects of temperature stratification and ambient noise, predicting that stratification results in a 33% increase in detectability and 56% increase in detection distance. The model had an overall error rate of 17.1% and an 18.7% error at a distance of 800 m, predicting 17% detectability at median ambient noise when the water column was not stratified and > 50% when the difference between surface and bottom temperatures was greater than 4.2 °C. The distance at 50% detectability increased with the formation of the Cold Pool during spring, increasing by nearly 300 m over 3 days. All seasons were associated with storm-induced reductions in overall detectability and distance at 50% detectability.ConclusionThermal stratification within the Southern Mid-Atlantic Bight increases bottom water ultrasonic transmitter detection distance and reduces the impact of surface noise. This effect leads to a seasonal increase in detection distance from the late-spring through the summer. To our knowledge, this study is the first to report and quantify an increase in detection range as a result of temperature stratification, likely due to placing transmitters and receivers on the same side of a strong thermocline.

Highlights

  • The detection efficiency of ultrasonic transmitters is seasonally variable, requiring long-term studies to evaluate key environmental features that mask, alter speed, bend, or reflect transmissions

  • Like multilaminar flow [14], internal waves [11], local fronts [10], and stratification [15] variably reflect, attenuate, or increase both signal and noise propagation through the water column according to their strength and origin. To evaluate both seasonal- and event-scale changes in detection range within a key migration corridor for elasmobranchs, fishes, and turtles [16, 17], we evaluated telemetry detection ranges over a 12-month period in a dynamic shallow shelf system: the Southern Mid-Atlantic Bight (SMAB)

  • Mid‐Atlantic cold pool The study area remained well-mixed (ΔT ≈ 0) from December 19, 2017 until mid-April 2018; thereafter vernal heating and a reduction in high-wind events resulted in a gradual rise in thermal stratification and subsequent Cold Pool formation in nearshore and mid-shelf waters (Fig. 2)

Read more

Summary

Introduction

The detection efficiency of ultrasonic transmitters is seasonally variable, requiring long-term studies to evaluate key environmental features that mask, alter speed, bend, or reflect transmissions. To investigate the effects of interactions between temperature stratification and storm-induced noise on transmission detectability, we conducted a year-long range test of 69-kHz acoustic transmitters in the bottom waters of the US Southern Mid-Atlantic Bight. As the prevalence of biotelemetry in long-term monitoring of fish migration and habitat use increases, so too should the evaluation of temporally varying detection probability. At a given distance and transmission strength, detectability is a function of signal loss due to spreading and sound attenuation in water. Summer temperature effects dominate over salinity impacts in marine shelf environments due to the comparatively larger temperature range

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call