Abstract
Experiments on Al–25 at%Ni peritectic alloy consisting of melting followed by thermal stabilization ranging from 0 to 2 h were carried out in a Bridgman-type furnace. Temperature distribution, microstructure evolution and solute concentration in the mushy zone are characterized. An analytical model is proposed to evaluate the Ni concentration of the melt after thermal stabilization. Effect of temperature gradient and volume fraction of liquid phase in the mushy zone on the Ni concentration of the melt is discussed. The steady state Ni concentration of the melt is inappropriately below the initial Ni concentration of the sample. The deviation increases with decreasing temperature gradient. Finally, the influence of thermal stabilization on the solute concentration of the melt is discussed based on a comparison of Al–Ni peritectic alloys with Al–Ni hyper-eutectic alloys and Al–Cu hypo-eutectic alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.