Abstract

Photostructural changes—the hallmark of non-crystalline chalcogenides—are in essence the basis of a number of photoinduced effects, i.e., changes of their physical properties, which are exploited in a variety of applications, especially in photonics and optoelectronics. Despite the vast number of investigations of photostructural changes, there is currently lack of systematic studies on how the thermal history, which affects glass structure, modifies the extent of photostructural changes. In this article, we study the role of thermal history on photostructural changes in glassy As15S85. This particular sulfur-rich composition has been chosen based on the colossal photostructural response it exhibits under near-band gap light irradiation, which inherently originates from its nanoscale phase-separated nature. To control the thermal history, the glass was quenched to various temperatures and each of these quenched products was annealed under four different conditions. Off-resonant Raman scattering was used to study the equilibrium study of each product. Structural changes of interest involve changes of the sulfur atoms participating into S8 rings and Sn chains. Their ratio was found to depend on quenching/annealing conditions. Near-band gap light was used to perturb the rings-to-chain ratio and at the same time to record these changes through Raman scattering, revealing an intricate behavior of photostructural changes. Ab initio calculations were employed to determine the stability of various sulfur clusters/molecules thus aiding the correlation of the particular photo-response of glassy As15S85 with its structural constituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.