Abstract

In this article we describe the thermal relaxation in anti-ferromagnetic/ferromagnetic bilayers using a hybrid method that combines a kinetic Monte Carlo technique with magnetization dynamics following the Landau Lifshitz Gilbert equation. A granular anti-ferromagnetic layer is exchange coupled to an amorphous ferromagnetic layer and discretized using a finite element method. Calculations are made to help clarify how the underlying magnetic structure is related to the measured exchange bias fields as a function of temperature for the case of amorphous Co65.5Fe14.5B20/granular Ir22Mn78 bilayers. Our calculations are in excellent agreement with experimentally measured macro-magnetic properties of these bilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.