Abstract

Energy piles are double purpose foundation elements used both for transferring loads to the soil and temperature regulation in buildings. The response of the pile-soil interface is influenced by daily and seasonal temperature variations. In order to assess the impact of thermal cycles on the mobilization of shear strength in energy piles, a series of saturated soil-concrete interface direct shear tests were performed in the laboratory for different temperature gradients with a new interface direct shear device adapted for thermomechanical loading. As natural soils are very complex due to a high variability of mineralogy and anisotropy, silica and carbonate sands were chosen in this study. Those sands are considered as the main types of sandy soils commonly met in geotechnics. The experimental campaign is divided in two parts: (i) Concrete-soil direct shear tests at 13°C (constant temperature) to be used as a reference (ii) Concrete-soil direct shear tests after 10 temperature cycles with a gradient ΔT=10°C, under submerged conditions. For these two types of soils, realistic temperature cycles applied between 8 and 18°C cause the overall low contraction of the samples. However the interface friction angles are not significantly modified before and after the temperature cycles. Even if the vertical strains of soils are cumulative along temperature cycles, soil’s strains and friction angle changes are relatively negligible for the temperatures and water content tested, which support the low impact of temperature cycles on the deformation of soil concrete foundation under submerged conditions. These experimental results bring new features which will be implemented in numerical models to study the long-term use of energy piles.

Highlights

  • Energy piles are double purpose structures which consist in the integration of heat exchanger, within structural foundations [1]

  • The effect of cyclic temperature changes on quartz sandconcrete and carbonate sand-concrete interface in conditions was studied in the laboratory using an interface direct shear device adapted for thermo-mechanical loading

  • It was found that the effect of 10 temperature cycles with a gradient ΔT=10°C on the mobilization of the shear strength at the soil-concrete interface is negligible

Read more

Summary

Introduction

Energy piles are double purpose structures which consist in the integration of heat exchanger, within structural foundations [1]. The operation of the ground source system energy piles brings about temperature changes which can have an impact on the pile deformation [2,3,4,5,6,7] as well as on the soil-pile interface [8,9,10]. This solution has been used for some time in Europe, the information concerning the long term thermo-mechanical behavior of the foundation and of the surrounding soil is still limited. Xiao et al [15] pointed out that after 10.5 temperature cycles an increase of the interface shear strength as well as an increase of adhesion (in the case of large heating cycles) was detected for sandy silty clay-concrete interface and it was mostly attributed to water migration due to the temperature changes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call