Abstract

A material system comprising a NiCoCrAlY bond coat deposited on a superalloy substrate has been subjected to thermal cycling. The assessment contrasts the influence of simple and stepwise (intermediate temperature hold) thermal cycles on the undulation of the surface and on the evolution of residual compressive stress in the thermally-grown oxide (TGO) layer. Stress-mapping of the TGO was performed using luminescence spectroscopy. Regions of interest were cross-sectioned using focused ion beam techniques to enable sub-surface examination by scanning electron microscopy. The investigation revealed that the surface develops undulations upon stepwise cycling, but not for either simple cycling or isothermal exposure (at comparable TGO thickness). This behavior has been related to the rapid creep displacements occurring in the bond coat during the intermediate temperature hold, because it is subject to large stress at this temperature. When the undulations attain sufficient amplitude, creep cracks form along the ridges, causing the stress to locally relax. For situations that do not cause undulations, areas of reduced residual compression appear in the TGO. Yttria-rich particles were invariably present in these regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.