Abstract

The durability of thermal barrier coatings (TBCs) is controlled by fracture near the interface between the ceramic topcoat and the metallic bond coat, where a layer of thermally grown oxide (TGO) forms during service exposure. In the present work, the influence of thermal cycle frequency on the oxidation performance, in terms of TGO growth and cracking behavior, of an air-plasma-sprayed (APS) Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat was studied. The results show that while TGO growth exhibited an initial parabolic growth behavior followed by an accelerated growth stage, higher cycle frequency resulted in a faster TGO growth and a higher crack propagation rate. It is found that a power-law relationship exists between the maximum crack length and the TGO thickness, which is independent of the cycle frequency. This relationship may warrant a TBC life prediction methodology based on the maximum crack length criterion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call