Abstract
Abstract Luminescent properties of the ytterbium doped zinc selenide crystals with 0.00–8.00 at % concentrations of the Yb impurity within the temperature interval from 6 K to 300 K were studied. Ytterbium doping was performed within three technological processes: during the growth by chemical vapor transport method and by thermal diffusion from the Bi+Yb or Zn+Yb melt. The influence of ytterbium impurity concentration on spectral position and intensity of the various photoluminescent bands in ZnSe emission spectra in visible and infrared range is analyzed. A tendency of ytterbium ions to form associates with background defects was demonstrated. A strong dependence between ytterbium influence on the zinc selenide emission spectra and concentration of selenium vacancies was shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.