Abstract

The development of the Weibel instability during the expansion of a thin plasma foil heated by an intense laser pulse is investigated, using both analytical models and relativistic particle-in-cell simulations. When the plasma has initially an anisotropic electron distribution, this electromagnetic instability develops from the beginning of the expansion. Then it contributes to suppress the anisotropy and eventually saturates. After the saturation, the strength of the magnetic field decreases because of the plasma expansion until it becomes too weak to maintain the distribution isotropic. For this time, the anisotropy rises as electrons give progressively their longitudinal energy to ions, so that a new instability can develop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.