Abstract

Natural chiral amino acids typically adopt an L structural configuration. While a preference for specific molecular chiralities is observed throughout biology and cellular chemistry, the origins of this preference are unclear. In a previous report the origin of enantiomeric selectivity was analyzed in terms of an "RNA World" model, and a pathway to a chiral preference for d-ribose was proposed based on the autocatalytic transformation of glyceraldehyde as a precursor to the formation of sugars. Metal-ion-promoted catalysis allows the parity non-conserving (PNC) weak nuclear interaction to influence the chirality of a nascent chiral carbon center. Since the PNC effect is the only natural property with an inherent handedness, it is an obvious candidate to influence enantiomeric preference from a catalytic reaction performed over geologically relevant time scales. The PNC influence requires and emphasizes the important role of catalytic metal ions in primordial chemistry. In this study, the impact of geologically available divalent calcium and higher Z alkaline earth elements are examined as mediators of chiral preference. Detailed calculations of the magnitude of the effect are presented, including the influence of time, temperature, pH, and metal ion identity. It is concluded that metal ions can direct chiral preference for amino acid synthesis via a metal-promoted autocatalytic Strecker reaction within a relatively short geological timeframe, thereby providing a pool of l-amino acids for catalytic chemistry evolving either from an RNA-world model of molecular evolution or alternative pathways to protein synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.