Abstract

AimThe aim of this study was to compare the intra- and interobserver contouring variability for structures with density of organ at risk in two types of tomography: kilovoltage computed tomography (KVCT) versus megavoltage computed tomography (MVCT). The intra- and interobserver differences were examined on both types of tomography for structures which simulate human tissue or organs. Materials and methodsSix structures with density of the liver, bone, trachea, lung, soft tissue and muscle were created and used. For the measurements, the special water phantom with all structures was designed. To evaluate interobserver variability, five observers delineated the structures in both types of computed tomography (CT). ResultsIntraobserver variability was in the range of 1–14% and was the largest for the liver. The observers segmented larger volumes on MVCT compared with KVCT for the trachea (79.56ccm vs.74.91ccm), lung (87.61 vs. 82.50), soft tissue (154.24 vs. 145.47) and muscle (164.01 vs. 157.89). For the liver (98.13 vs. 99.38) and bone (51.86 vs. 67.97), the volume on MVCT was smaller than KVCT. The statistically significant differences between observers were observed for structures with density of the liver, bone and soft tissue on KVCT and for the liver, lung and soft tissue on MVCT. For the structures with density of the trachea and muscles, there were no significant differences for both types of tomography. ConclusionsDuring the contouring process the interobserver and intraobserver contouring uncertainty was larger on MVCT, especially for structures with HU near 80, compared with KVCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.