Abstract

Changes in nasal airflow caused by varying intranasal volumes and cross-sectional areas affect the contact between air and surrounding mucosa entailing alterations in nasal air conditioning. This study evaluates the correlation between nasal air conditioning and the volumes of the inferior and middle turbinates as measured by magnetic resonance imaging (MRI). Fourteen healthy volunteers were enrolled. Each volunteer had been examined by rhinomanometry, acoustic rhinometry, intranasal air temperature, and humidity measurements at defined intranasal sites as well as MRI of the nasal cavity and the paranasal sinuses. The volumetric data of the turbinates was based on the volumetric software Amira. Comparable results were obtained regarding absolute humidity values and temperature values within the nasal valve area and middle turbinate area for both the right and the left side of the nasal cavity. No statistically significant differences were found in the rhinomanometric values and the acoustic rhinometry results of both sides (p > 0.05). No statistical correlations were found between the volumes of the inferior (mean, 6.1 cm3) and middle turbinate (mean, 1.8 cm3) and the corresponding humidity and temperature values. Additionally, the air temperature and humidity values did not correlate with the rhinometrical endonasal volumes (0-20 mm and 20-50 mm from the nasal entrance). The normal range of volumes of the inferior and middle turbinate does not seem to have a significant impact on intranasal air conditioning in healthy subjects. The exact limits where alterations of the turbinate volume negatively affect nasal air conditioning are still unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.