Abstract

We applied systematically the branching energy cone model to a large ( $$N=50$$ ) set of stratovolcanoes around the world in order to evaluate the main topographic characteristics that may control the propagation of dense pyroclastic density currents (PDCs). Results indicate that the channelization efficiency of a PDC is strongly controlled by the relative scale between flow size and volcano topographic features. Most of the studied stratovolcanoes topographies are able to induce significant PDC channelization in proximal domains, while strong channelization in distal zones is mainly observed for volcanoes with steep flanks, with long, uninterrupted valleys, and with catchments zones of pyroclastic material (i.e. the valleys heads) located near the source. From the statistical analysis of numerical results, we recognise five groups of stratovolcanoes in terms of the mode of interaction between their topographies and dense PDCs: (1) intense channelization through different valleys up to distal domains (e.g. Colima and Peteroa); (2) intense channelization through a single, dominant valley up to distal domains (e.g. Reventador and Mt. St. Helens); (3) intense channelization near the source and moderate distal channelization, frequently involving intertwined drainage networks (e.g. Tungurahua and El Misti); (4) potentially intense channelization only near the source, typically involving flat distal topographies (e.g. Sinabung and Mayon); and (5) weak channelization in proximal domains, resulting in efficient early energy dissipation and thus reduced PDC run-out distance (e.g. Kelut and Akagi). The relevance of this classification lies in the possibility of defining volcanic analogues (defined here as volcanoes that share a suite of topographic characteristics and may be considered comparable to a certain extent) and identifying the main processes that may affect PDC propagation in specific topographic contexts. These aspects are useful for studying poorly documented volcanic edifices and for volcanic hazard assessment. Additionally, we compare this classification with published morphometric characteristics of volcanoes, showing morphometric parameters such as the mean slope of the low flank, irregularity index, ratio of volcano height and basal width and ratio of crater width and basal width are useful variables for recognising the groups we defined. These parameters can be used as rough indicators of the expected interaction patterns between the topography of a given volcano and dense PDCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.