Abstract
The influence of magnetic surface anisotropy on the fast relaxation of the hyperfine field forced by an r.f. field in invar (r.f. collapse effect) has been studied using the Mössbauer technique. The Mössbauer measurements were performed as a function of sample thickness (2.5–12 μm) and intensity (1–9 Oe) of the 50 MHz r.f. field applied. Due to the very high sensitivity of the r.f. collapse effect to the anisotropy field it was possible to detect the influence of “spin pinning” on the r.f. collapse effect. It is shown that a decrease of the sample thickness causes a decrease of the r.f. collapse effect at a given r.f. field frequency and intensity which is connected with the increase of the anisotropy field due to surface anisotropy. The dependence of the r.f. sidebands effect, which accompanies the r.f. collapse effect, on the sample thickness is discussed. The r.f. sidebands effect increases with decreasing sample thickness, which is in good agreement with the magnetostriction model of sidebands formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.