Abstract

Single-crystal angular-resolved magnetometry and wavefunction-based calculations have been used to reconsider the magnetic properties of a recently reported DyIII-based single-molecule magnet, namely [Dy(hfac)3(L1)] with hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate and L1 = 2-(4,5-bis(propylthio)-1,3-dithiol-2-ylidene)-6-(pyridin-2-yl)-5H-[1,3]dithiolo[4',5':4,5]benzo[1,2-d]imidazole. The magnetic susceptibility and magnetization at low temperature are found to be strongly influenced by supramolecular interactions. Moreover, taking into account the hydrogen-bond networks in the calculations allows to explain the orientation of the magnetic axes. This strongly suggests that hydrogen bonds play an important role in the modulation of the electrostatic environment around the DyIII center that governs the nature of its magnetic ground-state and the orientation of its anisotropy axes. We thus show here that SMM properties that rely on supramolecular organization may not be transferable into single-molecule devices.

Highlights

  • At the molecular level, single-molecule magnets (SMMs) can be seen as magnets in which the magnetic information relies on the magnetic moment of the molecule and its magnetic anisotropy [1]

  • The magnetic susceptibility and magnetization at low temperature are found to be strongly influenced by supramolecular interactions

  • Taking into account the hydrogen-bond networks in the calculations allows to explain the orientation of the magnetic axes. This strongly suggests that hydrogen bonds play an important role in the modulation of the electrostatic environment around the DyIII center that governs the nature of its magnetic ground-state and the orientation of its anisotropy axes

Read more

Summary

Introduction

Single-molecule magnets (SMMs) can be seen as magnets in which the magnetic information relies on the magnetic moment of the molecule and its magnetic anisotropy [1]. Single-crystal angular-resolved magnetometry and wavefunction-based calculations have been used to reconsider the magnetic properties of a recently reported DyIII-based single-molecule magnet, namely [Dy(hfac)3(L1)] with hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate and L1 = 2-(4,5-bis(propylthio)-1,3-dithiol-2-ylidene)-6-(pyridin-2-yl)-5H-[1,3]dithiolo[4',5':4,5]benzo[1,2d]imidazole. Taking into account the hydrogen-bond networks in the calculations allows to explain the orientation of the magnetic axes.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call