Abstract

The effects of the sulphurization annealing time on the morphological, chemical, structural and electrical properties of CZTS thin films were investigated by scanning electron microscopy, X-ray energy dispersive spectroscopy, Hall effect and electrical conductivity measurements in samples annealed during different time intervals. The increase of the annealing time was found to improve the chemical composition of the samples and to, slightly, increase the crystallite size. Small amounts of Na were measured in the samples. However, the concentration of Na does not increase significantly with the annealing time and should not modify the characteristics of the CZTS thin films. It was also found that at high temperature the electrical conductivity is dominated by thermal emission of carriers over the inter-grain potential barriers. As the temperature decreases different hopping conduction mechanisms start to dominate. At first with nearest-neighbour hopping and successively changing to variable range hopping conduction with a crossover from Mott and Efros–Shklovskii behavior. The electrical conductivity, the concentration of free holes, acceptors and donors, traps' density at the grain boundaries and the grain potential barriers height were found to increase with the annealing time. However, a significant drop in the compensation ratio from 0.8 to 0.5 was also detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.