Abstract

Presented are the results of laboratory experiments on investigating manifestations of acoustic emission (AE) of a gouge-filled fault during stick-slip. The laboratory experiments were held at the slider-model setup, when a granite block slides along a rough granite base under normal and shear loads. In the course of experiments we altered the structure of the two-component filler of the fault and focused on variations of the AE parameters. The kinematic parameters of fault slip events in all the realizations remained approximately the same. The eff ect of gouge structure on the statistics of AE has been revealed. An alteration of proportion of quartz sand / glass beads in the filler of the fault was accompanied by an alteration of the b-value of frequency-energy distribution from 0.53 to 0.85, and the p-value of Omori law from 1.00 to 2.06. Also, it has been demonstrated that the nucleation of a slip event is accompanied by an alteration of the mechanism of AE generation – at the initial stage the 'tensile crack' signals prevailed, while at the final stage – the 'shear crack' signals did. The alteration of AE genesis manifested vividly in a corresponding alteration of the emitted waveforms for all the realizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.